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Executive Summary 
Like many forested and snow dominated catchments in the arid western U.S., Colorado’s Rio Grande Headwaters (RGH) has experienced 

numerous land cover disruptions in recent decades. These land cover disturbances have occurred as stand-alone events (“single 
disturbances”) and as events that overlap one another in space and time (“overlapping disturbances”). Severe drought in the early 2000s, 
widespread spruce beetle induced forest mortality (~2005-2011) and the West Fork Complex Fire of 2013 have raised concerns about 
streamflow resilience under future climate and land cover disturbance scenarios. This study was developed as a collaborative effort 
between the Colorado School of Mines and RGH stakeholders who identified priority watershed concerns for the RGH in the near-term 
future. To investigate these concerns, we used a modified version of the U.S. Geological Survey’s Monthly Water Balance Model to produce 
modeled streamflow response to several single and overlapping disturbances over the years 2021-2050. Key findings from each scenario are 
presented below:  

Model Scenario Change Observed Additional Context 

 
Baseline No change. 

• This scenario did not include any land change or climate 
disturbances and was used as a point of comparison for the 
disturbance scenarios described below. 

 

Hot-and-dry 
climate 
scenario 

• Water yield decreases throughout each annual season, except 
during the rising limb of annual snowmelt, when water yield 
increases.  

• Decreases in annual water yield worsen with time, as climate gets 
progressively hotter and drier.  

• As the climate provides less water and higher temperatures, the 
landscape experiences a higher demand for water. The result is 
decreased water yield in surface water bodies (i.e. streams and 
rivers). 

 

Wildfire 
scenario 

• Water yield increases throughout each annual season and 
produces the greatest peak runoff of all scenarios.  

• Post-fire runoff does return to the ‘baseline’ condition over time 
as vegetation reestablishes and the watershed recovers.  

•  While post-fire water yield impacts are substantial, wildfire 
impacts have been shown to be short-lived (Rust et al., 2019).  

 

Overlapping 
wildfire & 

hot-and-dry 
climate 

scenarios 

• These scenarios also predict increases in water yield throughout 
each annual season and produce the highest (and likely earliest) 
runoff of all scenarios during the rising limb of annual snowmelt.  

• Post-fire runoff shows gradual recovery (return to baseline 
condition) over time.  

• When forest disturbances overlap, water yield changes are often 
difficult to detect (or are difficult to attribute to individual 
disturbances events) (Schneider et al, in review). 

• However, the use of models allows us to designate when/where 
disturbances occur, and to estimate their combined water yield 
impacts in a more-controlled way. 

 

Overlapping 
forest-

change and 
hot-and-dry 

scenario 

• Does not alter water yield relative to the ‘hot-and-dry’ scenario. 

• This scenario changed one forest type to another forest type and 
was likely not drastic enough to cause changes in water yield with 
this model. However, if a forest type were replaced with a non-
forest type (e.g. grassland) water yield changes could be 
apparent. 
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Key takeaways from this work:  

• Results from this work demonstrate that climate, and especially pre-disturbance (“antecedent”) moisture conditions, have strong 
controls on post-fire surface runoff and recovery. 

• Water managers should:  
o 1) Plan for a narrowing in the timing window of annual snow melt season (faster, earlier melt) regardless of disturbance type 

(e.g. climate or land cover). 
o 2) Consider antecedent moisture conditions when formulating their post-fire response plans, knowing that annual water 

yield and annual peak-runoff (ROpk) will likely temporarily increase post-fire, but that dry antecedent conditions may result in 
earlier ROpk, while wetter antecedent conditions may result in delayed ROpk.  

o 3) For water supply predictions where source waters are in forested catchments (as is the case for much of Colorado’s water 
supply), rely on hydrologic models that account for time-varying (dynamic) and quantitative vegetation change. Models 
lacking these elements likely will not adequately capture (or predict) water supply under dynamic forest health conditions. 

o 4) Encourage state and federal streamflow and snowpack monitoring efforts throughout the state of Colorado, and especially 
in Colorado’s high forested watersheds.  
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1. Background 
Wildfires and bark beetle induced forest mortality are naturally occurring phenomena 

that have been part of North American ecosystems for millennia (Parker et al., 2006). While the 
relationship between bark beetle epidemics and wildfire is complex (Colorado State Forest 
Service, 2020) and often disagreed upon in the literature (Hicke et al., 2012; Fettig et al., 2021), 
both wildfires and insect induced forest mortality are undoubtedly exacerbated by drought 
(Kolb et al., 2016; Stephens et al., 2018). Wildfire is more likely when fuel is dry, and when trees 
are under water-stress, they often cannot adequately defend themselves against bark beetles 
(Fettig et al., 2021). As global temperatures increase, and severe drought becomes more 
commonplace (Cook et al., 2015), concern over the duration, frequency and severity of forest 
disturbances also mounts (Abatzoglou & Williams, 2016; Temperli et al., 2013; Westerling, 
2006). Often, these forest disturbances occur in series (one disturbance creates optimal 
conditions for the next) or in parallel (co-occurring disturbances). In either case, multiple 
disturbances can have compounding effects on hydrologic processes. Disturbance signals are 
often variable at the stream outlet (Goeking & Tarboton, 2020), especially in the southern 
Rocky Mountains (Saxe et al., 2018), and are difficult to separate using observational 
before/after-control/impact (BACI) methods (Schneider et al, in review).  

Traditional BACI methods rely on the assumption that the disturbance in question is the 
only (or most significant) difference between before-and-after disturbance periods, or between 
control-and-impacted sites. However, even when this assumption is true, co-occurring 
disturbances (as is often the case) are difficult to isolate at the stream outlet, especially when 
one disturbance mutes the hydrologic response of the other disturbance(s), such that the 
combined signal cannot be separated from natural streamflow variability. For example, drought 
is expected to decrease streamflow (Rood et al., 2008), and often occurs before, during or after 
wildfire, which is often expected to (at least temporarily) increase streamflow after vegetation 
is destroyed and evapotranspiration (ET) potential is lost (Goeking & Tarboton, 2020). 
Hydrologic models offer a viable tool for the problem of separating disturbance signals in 
observational (in-situ) datasets because they allow for true control over all variables 
contributing to streamflow variability (Penn et al., 2020). However, for hydrologic models to 
best capture forest disturbances, quantitative vegetation representation within the model is 
necessary (Goeking & Tarboton, 2020).  

Since the early 2000s, Colorado’s Rio Grande Headwaters (RGH) has experienced 
drought, widespread spruce beetle (Dendroctonus rufipennis) induced forest mortality (~2005 – 
2011) and was extensively burned by the 2013 West Fork Complex (WFC) Fire. The RGH is 
mostly composed of alpine and subalpine forest ecoregions, which primarily host spruce-fir 
populations that thrive in the relatively cool and wet conditions found among subalpine forests 
(Colorado State Forest Service, 2014). Historically, wildfires have been more common in lower 
elevation forests that tend provide more optimal (warmer/drier) conditions for wildfire 
(Westerling, 2006). However, the 2013 WFC fire serves as a single example of a growing trend 
of wildfire occurrence in higher elevation forests (Alizadeh et al., 2021), and is likely 
attributable (at least in-part) to the decreasing snowpack trends and warming climate that have 
been observed in the RGH in recent decades (Chavarria & Gutzler, 2018; Sexstone et al., 2020). 
Snowpack that eventually becomes streamflow in the RGH is a critical natural resource to 
downstream water users in the San Luis Valley Irrigation District, several municipalities in 
Colorado and even downstream states that are entitled to receive annual flow volumes from 
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the Rio Grande (Rio Grande Compact, 1938). These recent forest disturbances have 
demonstrated that high elevation forest disturbances are of concern for the RGH stakeholders.   

Certain disturbances are unlikely to occur again in the RGH for at least the next century; 
for example, another spruce beetle epidemic in the RGH is unlikely in the near-term future 
since the spruce population has already been extensively compromised and could take 
centuries to fully recover. However, the possibility of another large wildfire is feasible, as the 
majority of RGH forest remains unburned.  Collaborative discussions among the Colorado 
School of Mines and RGH stakeholder groups1 have identified climate change and wildfire (and 
especially the compounding hydrologic impacts of each) as priority concerns for the RGH. 
Although wildfire is arguably less-likely now than it was before the spruce beetle epidemic 
(dead spruce trees in their present grey phase have lower fuel loads (Hicke et al., 2012)), water 
managers are looking toward feasible worst-case scenarios to inform their future water 
planning efforts. Collaborative discussions have also identified climate-driven forest succession 
as a concern for the RGH because, as the warming and drying of higher elevations continues, 
distribution of vegetation may shift toward species that are better adapted to those conditions 
(Kelsey et al., 2018), especially following land cover disturbance (Stevens-Rumann & Morgan, 
2019).   

Water managers who rely on heavily forested drainages for their water supply, like 
those in the RGH, need planning tools capable of quantitatively representing vegetation 
changes to evaluate changes at the stream outlet. In this study, we modify the U.S. Geological 
Survey’s (USGS) Monthly Water Balance Model (MWBM) to compute actual evapotranspiration 
(AET) based on empirically derived relationships between remotely sensed AET and a 
quantitative vegetation metric – leaf area index (LAI). The modified model version is referred to 
as MWBM-LAI. In addition to the development of MWBM-LAI, the goals of this study are to: 1) 
use this model to evaluate future forest disturbance scenarios that were identified as priority 
concerns by RGH stakeholders, and 2) to do so in a way that vets the hydrologic response to 
both singular and combined forest disturbances.  

2. Modeling Methodology 
2.1 Study Area & Model Domain 

The Rio Grande Headwaters (RGH) serve as model domain for this study. We define the 
RGH as the portion of the Upper Rio Grande basin that drains into Del Norte, CO. Del Norte 
marks a particularly important point along the Rio Grande, because it is the first major decision-
making point along the river, for determining quantities of water that must be sent to 
downstream users (Rio Grande Compact, 1938). The Rio Grande streamflow gage near Del 
Norte (USGS 08220000) is used as the design outlet for this study because 1) it provides a long 
period of record for streamflow (capturing flow from portions of the watershed that have 
previously experienced forest disturbance) and 2) flow there is mostly natural (it is located 
upstream of agricultural diversions in the San Luis Valley). However, several trans-basin ditches 
and reservoirs do exist within the RGH (upstream of Del Norte), but previous analyses have 
demonstrated that they do not significantly alter natural streamflow (Blythe & Schmidt, 2018; 
Chavarria & Gutzler, 2018).  

 
1 In this report, RGH stakeholder groups include: the Rio Grande Restoration Project, the San Luis Valley Water 

Conservancy District the Rio Grande Roundtable (of the Colorado Water Conservation Board), & the Rio Grande 

National Forest Service  
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The RGH is a heavily forested basin, consisting mostly of subalpine forests and includes 
some alpine, mid-elevation forests, grasslands and shrublands (US Environmental Protection 
Agency, 2012) – Figure 1. Since the early 2000s, the RGH has experienced substantial insect 
induced forest mortality and vegetation destruction from wildfire (Penn et al., 2020; Schneider 
et al., in review) – see Appendix Figure A1. Spruce beetle induced tree mortality impacted much 
of the forested portion of RGH from around 2000 – 2011; with much of the insect damage 
occurring between 2005 -2010 and tapering off around 2010-2011 (Schneider et al., in review; 
Sexstone et al., 2020). A few years later, the West Fork Complex Fire (initiated June 2013) 
burned large sections of the RGH, including both insect-impacted and undisturbed forest.  

 

 
Figure 1 – Map of model domain with subbasins and EPA Level IV Ecoregions. 
Inset map (top right), shows the RGH basin within state lines. The rectangle surrounding the RGH is the state of 
Colorado.  

 
The RGH experiences a semi-arid climate, with most of the annual precipitation 

occurring as snow in colder months and most annual streamflow during warmer months when 
snow is melting. In recent decades, RGH precipitation has been trending downward and 
temperature has been trending upward (Sexstone et al., 2020; Chavarria & Gutzler, 2018). 
Several basins within the RGH have been observed as “water limited” (aridity index > 1), 
meaning that less water is available in those systems than what is demanded by the climate 
(Schneider et al., in review). The seasonal pulse in streamflow is highly variable in both timing 
and magnitude and depends on the amount of seasonal snowpack, as well as the rate of 
spring/summer snowmelt. Rising temperatures in the RGH contribute to an increasing ratio of 

USGS 082200000 
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rain:snow in annual precipitation and may explain some of the streamflow variability (Chavarria 
& Gutzler, 2018).  

Our model domain includes the RGH (delineated at the Del Norte gage), and is distributed 
into 51 sub-basins, where each sub-basin is a hydrologic unit code (HUC) 12 basin (Figure 1). 
Hydrologic unit code basins are maintained under the USGS Water Boundary Dataset and are 
commonly used in the USGS MWBM. The HUC-12 resolution was chosen because it provides 
basin delineations small enough to adequately characterize forest composition (level IV 
ecoregions and LAI) at the subbasin scale, without over-generalizing. Simulated streamflow 
from all sub-basins contributes to total simulated flow for the Rio Grande at Del Norte.   
 

2.2 Data Sources 
 
Climatic Data 

Total monthly precipitation and average monthly temperature were sourced from the 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) at 4-km resolution 
(PRISM, 2020). Daily actual evapotranspiration (AET) were taken from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) MOD16A2 Version 6, at 500-m spatial and 8-day temporal 
resolutions (Running et al., 2017). Temperature, precipitation and AET rasters were aggregated 
to study basin polygons using a weighted extraction. Resulting AET extractions were cloud 
filtered (PRISM data did not require a cloud filter), removing observations where significant 
cloud cover was present with 75% or greater coverage (more stringent cloud filters greatly 
abbreviated the dataset). The resulting cloud-filtered dataset was gap-filled for single missing 
values by averaging nearest neighbors or for multiple consecutive missing values by assuming 
the previous 8-day observation.  
 
Leaf Area Index 

A 4-day Leaf Area Index (LAI) product was sourced from MODIS MCD15A3H Version 6, 
Level 4, at 500-m resolution. Leaf area index is a dimensionless canopy metric that represents 
the ratio of one-sided leaf area per unit ground area in broadleaf canopies and one half the 
total needle surface area per unit ground area in coniferous canopies (Myneni et al., 2015). A 
cloud correcting filter was applied to LAI, removing observations where significant cloud cover 
was present in study basins with 75% or greater coverage. Resulting 4-day cloud-filtered LAI 
observations were spatially aggregated to study basins using a weighted extraction, temporally 
aggregated to mean monthly LAI and were gap-filled following the method described above. 
MODIS-LAI data was the most temporally limiting dataset in this study as the available period of 
record only goes back to July 2002.  
 
Runoff Data 

Daily discharge [volume/time] data was sourced from the Rio Grande streamflow gage 
at Del Norte (USGS 08220000). These data were converted to surface runoff [depth/time] by 
normalizing discharge against the basin area and were further converted to total monthly 
runoff (RO) by summing daily RO values for each month.  
 
Future Data Modifications 

Modeled future disturbance scenarios required modification of some historic data. 
Specifically, future climate data was modified to a hot-and-dry scenario, following monthly 
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temperature offsets and precipitation adjustment factors from the Colorado Water Plan’s 2019 
Technical Update (Wlostowski, 2019) – Table 1. Details on the production of future climate data 
is described in greater detail in Section 2.4. 
 

Table 1- Climate modifications for the hot-and-dry scenario (“7525 scenario”) 

Modifier Ja
n

 

Fe
b

 

M
ar

 

A
p

r 

M
ay

 

Ju
n

 

Ju
l 

A
u

g 

Se
p

 

O
ct

 

N
o

v 

D
e

c Annual 
Average 

Precipitation change  
factor [-] 

1.11 1.03 0.96 0.85 0.82 0.94 0.94 0.93 0.94 0.95 1.04 1.05 0.96 

Temperature offsets 
[℃] 

1.74 1.55 1.91 2.22 2.84 2.88 2.70 2.75 2.74 2.43 2.14 1.68 2.30 

 
Future LAI data used in fire-scenarios also required modification to mimic conditions 

observed during the WFC fire of 2013. Changes in LAI were quantified for two well-studied sub-
basins (Schneider et al., in review), including Trout Creek and Little-Squaw (“Little-S”) Creek 
basins – which were burned at moderate-to-high burn severity at 21% and 20% area, 
respecitvely, during the 2013 WFC fire. These basins are mostly ‘subalpine forest’ and ‘alpine’ – 
and are well representative of other sub-basins burned during the WFC fire. The LAI changes 
observed in these basins after the WFC fire (Table 2), are used to modify LAI conditions for 
future fire scenarios. Here, we assume that post-fire changes in LAI are (in part) dependent on 
burn severity. So, by reproducing post-fire LAI changes, burn-severity is indirectly reproduced as 
well. However, from a hydrologic perspective, it is also important to note that burn severity 
does not only alter vegetation density, but it also changes soil surface properties, especially at 
higher burn severities (Ebel et al., 2016). The wildfire simulation is described in greater detail in 
Section 2.5 of this report. 
 

Table 2- Changes in LAI after the WFC fire for Trout & Little-S Creek Basins 
These changes are relative to a control period (July 2002 – Dec 2004), before insect damage was severe in these 
basins and before wildfire activity.  

Percent Change in LAI from Control Period [%] 

Time of Year 
Fire Year 

(2013) 
1-2 years post-fire 

(2014-2015) 
3-4 years post-fire 

(2016-2017) 

Warm months 
[June - Sept] 

-20.6 -6.0 0.7 

Cold months 
[Oct - May] 

-49.1 -47.1 -44.4 

 

2.3 Model description  
The U.S. Geological Survey’s (USGS) Monthly Water Balance Model (MWBM) is a water 

budget accounting tool that has been used to evaluate water budgets under many climatic 
conditions (McCabe & Wolock, 2008; Hay & McCabe, 2010; Bock et al., 2016) including as a 
component of the USGS National Hydrologic Model (NHM) where its monthly simulations are 
used to constrain a daily hydrologic model (Regan et al., 2019). The original MWBM computes 
surface water budget components at a monthly time step and is driven by mean monthly 
temperature, total monthly precipitation, and latitude for the computation of day length; used 
to compute potential evapotranspiration (PET) following the Hamon equation (Hamon, 1961). 
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This description focuses on the MWBM’s computation of evapotranspiration (ET), however, for 
an in-depth description of the MWBM accounting procedure, see McCabe & Markstrom, 2007. 
Under relatively dry conditions, actual evapotranspiration (AET) is computed as a function of 
snow melt, precipitation (not routed to direct surface RO) and soil moisture conditions. Under 
relatively wet conditions, AET is equal to PET. Thus, in either case (relatively wet or dry 
conditions), the original MWBM does not account for vegetation in its computation of ET – 
ultimately limiting its usefulness as a tool to evaluate hydrologic implications after land cover 
disturbance.  

For this study, we develop a modified version of the original MWBM, called “MWBM-
LAI” which relies on LAI for the computation of AET. To achieve this, the AET computation 
module in the original MWBM (described above) was simply replaced with a new AET 
computation module based on empirically derived relationships between AET and LAI in the 
RGH. The inclusion of this LAI-based AET computation does require monthly LAI as an additional 
model forcing dataset.  

Derivation of empirical relationships between observed AET and LAI is described as 
follows. First, each HUC-12 sub-basin in the RGH was designated as its “dominant” ecoregion 
type. For example, if the majority of a sub-basin’s land cover area was ‘subalpine forest’, that 
sub-basin was designated as “subalpine forest dominant”. Next, for subbasins of each dominant 
ecoregion, monthly LAI was plotted against monthly ET, and linear regressions were performed 
to model ET as a function of ET. Separate regressions were performed for warm months (Jun – 
Sept) and cold months (Oct -May). Linear regressions enforced a zero y-intercept, to account 
for our assumption that ET is primarily controlled by vegetation, especially during warm 
months. While five dominant ecoregions are present throughout RGH sub-basins, four sets of 
ET-LAI empirical relationships were developed, because ‘alpine’ and ‘subalpine forest’ 
ecoregions exhibited extremely similar ET-LAI empirical relationships. Empirically derived 
coefficients for dominant ecoregions are summarized in Table 3.  
 

Table 3- Empirically Derived Coefficients for Linear Models of ET -vs- LAI  
Following y = mx + b, where (b = 0) such that: ET = m(LAI). 

  Alpine/subalpine 
forests 

Mid-elevation 
forests 

Grassland 
parks 

Foothill 
shrubland 

Warm months 
[Jun – Sept] 

Intercept 0 0 0 0 

Slope 44.76 35.73 40.68 35.58 

R2 0.96 0.97 0.96 0.96 

Cold Months 
[Oct – May] 

Intercept 0 0 0 0 

Slope 75.01 51.94 74.14 65.99 

R2 0.65 0.83 0.83 0.71 

Based on: 

10 ‘alpine’ and ‘subalpine 
forest’ dominant HUCs 

mostly free of insect 
mortality and burn 

between July 2002-Dec 
2006.  

‘Mid-elevation 
forest' dominant 
HUCs between 
July 2002 - Oct 

2020.  

‘Grassland park’ 
dominant HUCs 

between July 
2002 - Oct 2020.  

‘Foothill shrubland' 
dominant HUCs   

between July 2002 - 
Oct 2020.  

 
The only other modification to the original-MWBM was the addition of seasonal 

precipitation adjustment factors or “pfactors”. Following the methodology described by Hay & 
McCabe (2010), seasonal pfactors were added to the MWBM-LAI and were calibrated along 
with the other six standard calibration parameters. Seasonal pfactors adjust precipitation 
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forcing data by some factor; either increasing precipitation (if pfactor >1) or decreasing 
precipitation (if pfactor < 1). Based on comparisons between PRISM-based precipitation and in-
situ precipitation observations from SNOTEL stations within the RGH, PRISM-based 
precipitation tends to underestimate winter precipitation and overestimate summer 
precipitation, especially during monsoon season. Thus, we felt the addition of seasonal pfactors 
to existing calibration parameters was necessary. Calibrated pfactor values are summarized in 
the Appendix (Table A1).  
 

2.4 Model Calibration & Validation  
To meet the needs of various scenarios, the MWBM-LAI is calibrated to two different 

time periods; once before the 2013 WFC fire to establish a ‘baseline’ parameterization and 
once after the WFC fire to establish a ‘fire parameterization’. Due to changes in surface 
conditions after moderate-to-severe burn, a unique fire-parameterization was necessary.  For 
the baseline parameterization, MWBM-LAI was calibrated against observed streamflow at the 
Del Norte gage for water years 2007-09 (October 2006 – September 2009), and validated for 
water years 2010-12 (October 2009-September 2012) (Table A1). To allow adequate time for 
model spin-up (ideally 4-5+ years), and to stay within the constraints of the MODIS-LAI period 
of record (begins July 2002), the calibration window could not start earlier than WY 2007. The 
MWBM-LAI was also calibrated after the WFC fire over the period of June 2013 – December 
2017 – to capture both the fire year (2013) and 4 post-fire years (2014-2017). This window is 
referred to as the “post-fire evaluation period” since the model was calibrated to these 
conditions but could not be validated against another fire period. For scenarios involving fire, a 
dynamic combination of baseline parameters and fire-specific parameters were employed. We 
define a ‘dynamic parameterization’ as one that changes throughout the simulation period to 
represent changing physical conditions within the study domain. This differs from a traditional 
parameterization which employs stationary parameter values throughout the simulation 
period.  

During each calibration period, 20,000 parameter combinations were tested. Parameter 
sets were generated following a Latin Hypercube Sampling (LHS) procedure, which breaks the 
parameter space into strata, and uniformly samples each strata, resulting in less-biased 
sampling with a smaller number of samples (relative to non-uniform sampling methods like 
Monte Carlo). Parameter set performance was determined by comparing modeled RO against 
observed RO using both Nash Sutcliffe Efficiency and percent-bias as objective functions. NSE is 
the magnitude of model residual variance to the variance of observed data (Nash & Sutcliffe, 
1970).  

• Nash Sutcliffe Efficiency (NSE) ranges from negative infinity to 1; where NSE = 1 
suggests a perfect relationship between modelled and observed data, NSE = 0 indicates 
that the model is as arcuate as the mean of observed data, and NSE < 0 reveals that the 
mean of observed data is a better predictor than the model.  

• Percent bias (pbias) gives the average tendency of modeled values to be greater than or 
less than observed values. Zero pbias is optimal, while positive and negative pbias 
indicate model overestimation and underestimation, respectively. 

 

Percent-bias and NSE were computed using the ‘hydroGOF’ library package in the 
statistical software R (Zambrano-Bigiarini, 2020). A ’50/50 score’, equally weighting scores of 
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NSE and pbias was used as the primary comparative metric (Equation 1), where a score of ‘100’ 
is a perfect score.  
 

50/50𝑠𝑐𝑜𝑟𝑒 =  0.5(𝑁𝑆𝐸 ∗ 100) + (0.5|𝑝𝑏𝑖𝑎𝑠|(−1) + 100)   Equation 1 
 

The top four scoring values from the 20,000 LHS parameter sets tested during 
calibration were also scored during the validation period. Parameters that performed best in 
both calibration and validation were selected for the baseline parameterization. Since 
validation was not possible for the fire-parameterization, the top scoring parameter set was 
selected from calibration. Parameter values and comparative metrics are summarized in Table 
A1.  

 

2.5 Future Streamflow Scenarios  
To approximate future flow conditions under various natural disturbances, MWBM-LAI 

was used to model four disturbance scenarios in addition to a baseline scenario (Table 4). These 
scenarios model future surface RO over the period: 2021-2050 and are described below. The 
year 2050 was selected as the endpoint for these simulations for two reasons; 1) it is close 
enough to the present date for RGH water managers to realize near-term potential water 
availability outcomes, and 2) this end date is congruent with climate projections in the 2019 
Colorado Water Plan Technical Update (Wlostowski, 2019) that water managers already look to 
for guidance. Note: all LAI and climate-forcing data sets used for future scenarios also include a 
5-year spin-up window, representing years 2016-2020. The 5-year spin-up window is made up 
of the first simulation year (2021), repeated five times. The purpose of this spin-up window is to 
allow time for model storage (“buckets”) to fill, prior to the simulation period of interest.  

• Baseline scenario- This scenario is used is used as the reference condition for all 
disturbance scenarios. Baseline parameterization is used here. No adjustments are 
made to baseline LAI-forcing data, or baseline climate-forcing data. Baseline LAI data is 
derived from monthly averages of LAI over a period of minimal disturbance in the RGH; 
July 2002 – December 2007. Monthly average LAI values are repeated 30 times to 
produce 30 years of future LAI data. Baseline climate data is produced by repeating 
PRISM-based monthly mean temperature and monthly total precipitation for 10 recent 
historic years (2011-2020) in triplicate to produce 30 years of future climate data.  

• “Climate only” scenario – No modifications are made to LAI-forcing data, however 
baseline climate-forcing data is altered toward hot-and-dry conditions by linearly scaling 
precipitation down (to max-dryness in 2050) and linearly scaling temperature up (to 
max-temperature) in 2050. See Table 1 for the scaling factors used to adjust climate. 
Baseline parameterization is used.  

• “Fire only” scenario- No modifications are made to baseline climate data, however 
some modifications are made to LAI-forcing data, and the fire-scenario parameterization 
is employed during the fire period (2041-2045). Here, LAI-forcing data are reduced at 
the initiation of fire (June 2041) and four post-fire years (through 2045). LAI reductions 
are based on observations of reduced LAI after the 2013 WFC fire (Table 2) which also 
began during the month of June and burned ‘alpine’ and ‘subalpine’ dominant sub-
basins within the RGH.  To mimic these conditions for a future fire scenario, historical 
observations of LAI reductions (after the WFC fire) are applied to 12 previously un-
burned ‘alpine’ and ‘subalpine forest’ dominant sub-basins (Figure 1 – see sub-basins 
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outlined in orange). This approach was taken because the WFC fire burned at least 20%-
area of 12-HUC basins in the ‘alpine’ and ‘subalpine-forest’ zones, at moderate-to-
severe burn severity. In this way, the fire scenario replicates the extent, burn severity 
(through reductions in LAI), and forest type that were observed during the 2013 WFC 
fire. However, this scenario simulates these conditions in a portion of the RGH that has 
not recently experienced wildfire and still has fuel available to burn. 

• “Fire + Climate” scenarios – All modifications to both “climate only” and “fire only” 
scenarios are applied here – including modified LAI-forcing data, hot-and-dry climate-
forcing data, and the fire-scenario parameterization during the fire period. This scenario 
is modeled twice: once with fire initiating in June 2013 and again in June 2041. The 
occurrence of fire seems more likely during the 2041-2050 decade, because that decade 
is the hottest and driest decade during the simulation period and because it is 
temporally further removed from the 2013 WFC. However, a fire was also simulated 
during the 2031-2040 decade, to observe a longer window of post-fire hydrologic 
recovery.  

• “Climate + forest change” scenario – Hot-and-dry climate-forcing data are used here. 
Baseline parametrization is employed. To simulate this change in forest cover, one third 
of sub-basins (17 HUC-basins) in the lowest forested portion of the RGH are converted 
from ‘subalpine forest’ dominant (mostly spruce-fir trees that prefer cool/wet 
environments) to ‘mid-elevation forest’ dominant (more pine and other tree species 
trees that can thrive in warmer condition). In converting these forest types, AET is 
computed in converted basins according to the empirical relationship of ET-LAI for a 
‘mid-elevation forest’ type. These changes are applied to the entire simulation period.  
 

Table 4- Disturbance Scenarios Summary 
Scenario Parameterization LAI adjustment Climate 

Baseline Baseline parameters Baseline LAI Baseline climate 

Climate only (hot/dry) Baseline parameters Baseline LAI Hot/dry climate 

Fire only  

Dynamic parameter 
combination- using 
calibrated fire 
parameters during fire 
window: 2041-2045; 
otherwise, baseline 
parameters. 

LAI adjusted during fire 
window: 2041-2045.  

Baseline climate 

Climate (hot/dry)  
+ fire  

Dynamic parameter 
combination- using 
calibrated fire 
parameters during fire 
window: 2041-2045; 
otherwise, baseline 
parameters. 

LAI adjusted during fire 
windows: (a) 2031-2035 
and (b) 2041-2045. 

Hot/dry climate 

Climate (hot/dry)  
+ forest change  

Baseline parameters 

LAI is indirectly adjusted 
for entire simulation 
window by converting 
1/3 of subbasins from 
‘subalpine forest’ to ‘mid 
elevation forest’. 

Hot/dry climate 
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3. Modeling Results  
The following results describe modeled RO scenarios for each decade within the future 

simulation period (2021-2052). The 2021-2031, 2031-2040 and 2041-2050 decades are referred 
to as the “first decade”, “middle decade” and “last decade”, respectively.   
 

3.1 Decadal Results 
The baseline scenario is used as the reference condition for all modelled scenarios. 

Table 5 shows decadal deviations (percent-change) in scenario RO from baseline RO for: annual 
total, melt season (April – June), monsoon season (July – September), and a low flow period 
(October – December). All scenarios involving climate change show progressive decreases in 
runoff over time, while all scenarios involving fire show notable increases in RO for the decades 
during and after fire. The “Forest Change + Climate” scenario matches the “Climate Only” 
scenario, likely because changing one forest type to another forest type (“subalpine forest” to 
“mid-elevation forest”) is not a major-enough change in vegetation to produce a shift in RO. 
The greatest increase to RO occurs in the “Fire 2041 Only” scenario, the greatest decrease to 
RO occurs during the “Climate Only” scenario, while scenarios involving both climate change 
and fire produce RO somewhere between the two extremes. Generally, the greatest deviations 
from the baseline condition are observed in the last modelled decade, as this is when modeled 
climate change is the most severe during the simulation period and because two of the three 
fire-scenarios initiate burn during the last decade. The only exception to this is with the “Fire 
2031 + Climate” scenario, where the greatest deviations from baseline are observed during the 
middle decade (when fire was simulated). In the last decade after the simulated 2031 fire, RO 
levels do shift back toward the baseline condition (especially during the low flow period), 
however flows stay elevated into the last decade.  

From a seasonal angle, the greatest deviations in fire scenarios occur during the low 
flow period and melt season. However, the greatest shift in the “Climate Only” scenario is 
observed during monsoon season. Computing the percent-change in small numbers can result 
in elevated percentages. Thus, high percent-changes observed during monsoon season and the 
low flow period do not reflect the highest absolute changes in RO. Absolute changes in decadal 
RO for each scenario are presented in the Appendix (Table A1).  
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Table 5 – Decadal Results Summarized by Flow Seasons  
Absolute values of RO per season and scenario are included in the Appendix as Table A2.  
 Runoff Percent-change from Baseline [%]   

 Decade  Climate Only 
Forest 

Change  
+ Climate 

Fire 
2041 
Only 

Fire 
2041 

+ 
Climate 

Fire 
2031 

+ 
Climate  

Color Key:  

Average Annual  
Runoff Total  

2021-30 -2.4 -2.4 0.0 -2.4 -2.4  < (-30) % 

2031-40 -8.7 -8.5 0.0 -8.5 27.8  (-30) - (-20) % 

2041-50 -14.4 -14.2 32.0 23.9 20.4  (-20) - (-10) % 

Average Melt Season  
Runoff Total 
[Apr - Jun] 

2021-30 0.7 0.7 0.0 0.7 0.7  (-10) - 0 % 

2031-40 -3.6 -3.6 0.0 -3.6 24.4  0% 

2041-50 -10.0 -10.0 17.1 19.9 19.3  0 - 10 % 

Average Monsoon 
Season Runoff Total 

[Jul - Sept] 

2021-30 -10.8 -10.8 0.0 -10.8 -10.8  10 - 20% 

2031-40 -26.2 -26.2 0.0 -26.2 48.8  20 - 30% 

2041-50 -38.9 -38.9 81.2 16.2 14.2  > 30 % 

Average Low-Flow  
Runoff Total 

[Oct-Dec] 

2021-30 -0.2 -0.2 0.0 -0.2 -0.2   

2031-40 1.1 1.1 0.0 1.1 46.4   

2041-50 6.0 6.0 85.8 21.0 3.7   

 

3.2 Final Decade (2041-2050) Results 
The greatest deviations in simulated RO are observed during the last decade of the 

simulation period. This section focuses on changes in the magnitude and timing of simulated RO 
for the last decade. Note: the “Forest Change + Climate” scenario is not included here for the 
sake of simplicity, and ultimately because it matches results from the “Climate Only” scenario. 
Only the two fire scenarios that simulate fire in the fire in the last decade are included here, for 
comparability.  

Simulated RO for the last decade was broken down into magnitude quartiles; low (Q0-
25%), low-moderate (Q25-50%), high-moderate (Q50-75%) and high (Q75-100%) and are shown 
in Figure 2. Except for low-moderate RO (Q25-50%), RO for “Climate Only” is always lower than 
baseline. For all flow magnitudes, RO in fire scenarios is always higher than baseline. Per 
quartile, the greatest absolute variability in RO occurs in the high RO (Q75-100%) quartile and 
the lowest absolute variability in RO occurs in the low RO (Q0-25%) quartile. However, the most 
notable RO deviations from baseline occur in the low RO quartile, where RO for “Climate Only” 
is slightly lower than baseline, but both fire scenarios are nearly an order of magnitude higher 
than baseline.  
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Figure 2- Simulated runoff quartiles for the last simulation decade.  
A) axes are untransformed. B) y-axis is log-transformed for ease of viewing low RO values.  
Note: Changes in flow magnitude for the last decade are also shown as flow duration curves (FDCs) in the Appendix 
(Figure A2).  

 
To capture how runoff magnitude in the last simulation decade changes throughout an 

annual cycle, monthly runoff averages and standard deviations are shown in Figure 3A and 
Figure 3B, respectively. Simulated runoff in Figure 3 generally agrees with previous results. 
However, with this presentation, a few several notable timing trends are now evident. First, 
“Fire Only” RO peaks a month later (June) than RO from all other scenarios (which peak in May) 
and experiences the most variable RO (shown by the shaded region in Figure 3B) as well as the 
highest peak RO (ROpk). Relative to baseline, all scenarios experience a more rapid rise in RO 
during the annual rising limb (March to April). RO for all scenarios exceeds baseline on the rising 
limb, however during the annual recession (~June-August), “Climate Only” RO is the only 
scenario lower than baseline. 

 

 
Figure 3- Mean monthly RO (A) and standard deviation (B) for each scenario during the last 
simulation decade.  
In both A and B plots, the bold lines show mean monthly RO during the last simulation decade. The shaded ribbons 
in plot-B represent one standard deviation above and below the mean, to illustrate the variability of RO during the 
last simulation decade.  
 

4. Discussion of Results 
 

One of the greatest advantages offered by hydrologic models is their ability to control all 
variables that influence a hydrologic flux, thereby allowing for 1) the creation of truly controlled 
reference conditions and 2) scaffolded introduction of disturbance scenarios. In this study, we 
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adapted a hydrologic model to capture both the individual and combined effects of various land 
cover disturbances at the stream outlet; a task that is challenging using observational datasets 
alone. These efforts were made possible by the inclusion of quantitative vegetation 
representation (LAI) in the MWBM’s water budget accounting procedure, and by developing 
dynamic parameterizations for the model.  

However, like all modeling approaches, the methodology developed in this study has 
limitations. Perhaps most notably, is that the inclusion of LAI in the model primarily controls 
AET (and indirectly controls soil moisture and surface runoff), however, LAI does not influence 
modeled snow water equivalent (SWE). Changes in forest canopy have been shown to alter 
snow accumulation and removal (sublimation/melt) rates (Gleason et al., 2019). Thus, 
vegetative controls on snowpack are an important part of the hydrologic “story” that are not 
included in this modeling effort. This may justify (in part) the lack of RO change observed 
between the “Climate Only” and “Forest Change + Climate” scenarios (Table 5). For example, if 
LAI within the model had any control over SWE computation, a change in forest structure 
(‘subalpine forest’ to ‘mid-elevation forest’) might have been more pronounced at the stream 
outlet. It is also plausible that changing one evergreen forest type to another evergreen forest 
type is truly not drastic enough (from either SWE or ET angles) to cause notable change in RO. 
The empirical LAI-ET relationships developed for alpine/subalpine and mid-elevation were 
based on observations of LAI and ET basins that were mostly free of insect induced forest 
mortality (it was not possible to choose basins entirely free of insect mortality). The minor 
presence of spruce beetles in those basins (or occurrence of drought) could have dampened the 
RO signal from the forest change scenario. However, changing a forest type to a more-different 
land cover (e.g. grassland or shrubland, as is sometimes observed post-fire (Stevens-Rumann & 
Morgan, 2019)), would produce greater changes in RO. The question of forest succession on 
streamflow response, and especially how-to best represent forest succession in hydrologic 
modeling tools, warrants additional study.  

Relative to baseline, the greatest increases in flow magnitude for all RO quartiles and for 
ROpk are observed in the “Fire Only” scenario. Others have also predicted substantial increases 
in modeled post-fire streamflow in the RGH, using historic hydroclimatic data (Penn et al., 
2020). The greatest variability in RO is also observed in the “Fire-Only” scenario, which agrees 
with previous observations of high variability in post-fire runoff in the Southern Rocky 
Mountain region (Saxe et al., 2018). Since a baseline climate is used in the “Fire Only” scenario 
(which is the “wetter” climate scenario of the two), more water is available to runoff. During 
the fire-only simulation, land cover conditions are changed to reflect decreased vegetation 
cover (and consequently decreased ET) and surface conditions are adjusted (via fire-specific 
parameterization) to reflect the post-fire environment. The combination of 1) reduced ET, 2) 
changes in post-fire surface conditions and 3) greater water availability create optimal 
conditions for increased RO throughout the annual water cycle. Not only is ROpk higher for the 
“Fire Only” scenario, but it is also a month later than all other scenarios (ROpk in June rather 
than May). This is driven in-part by the chosen month for fire simulation (June), which caused a 
large spike in RO during the month of June and skews decadal timing results toward delayed 
ROpk. Still, the snowmelt RO recession also shows elevated RO for both fire scenarios, which 
reflects decreased ET during those warm summer months (making more water available for 
RO). Reductions in ET (as well as altered surface conditions) also explain elevated RO during 
lower-flow periods for both fire scenarios. Specifically, when less moisture is drawn out of soil 
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stores during warm months, a higher subsurface moisture content is available to support RO 
during low-flow periods.  

The opposite is true for the “Climate Only” scenario, where vegetation and surface 
conditions mimic baseline, but climate is hotter and drier. Overall, the greatest decreases in 
flow magnitude occur in the “Climate Only” scenario, with the exceptions of low-moderate RO 
(Q25-50%) and ROpk. With less water available to runoff in the “Climate Only” scenario, it is 
counter-intuitive that RO could exceed baseline RO any time of year. However, increases in 
melt season temperature drive increases in RO during the “rising limb” of the annual melt 
season, as well as ROpk. These increases are balanced by a more rapid decline in RO during the 
snowmelt recession and during low-flow periods.  

Not surprisingly, runoff during the “Climate + Fire” scenario generally falls somewhere 
between the “Climate Only” and “Fire Only” scenarios. However, a few times throughout the 
year this is not the case. During the rising-limb of annual snowmelt, RO during the “Fire + 
Climate” scenario increases more rapidly than all other scenarios and has the highest ROpk 
during the month of May. The combination of post-fire changes in land surface conditions, as 
well as increased temperature, drive this fast and high RO trend during melt season. A caveat of 
using a monthly resolution water budget model is that changes in RO timing that are less than 
one full month will not be explicitly detected by the model. However, since “Fire + Climate” RO 
shows the fastest and highest trend, it is likely that ROpk does occur earlier (on the order of days 
to weeks) than baseline RO. Given that the only difference between the “Fire Only” and “Fire + 
Climate” scenarios is climate, yet the timing and magnitude of their respective ROpk’s are quite 
different; this strongly points toward antecedent conditions having robust controls on the 
outcome of both the timing and magnitude of post-fire streamflow and recovery (McMillan et 
al., 2018; Moeser & Douglas-Mankin, 2017) . Drier antecedent conditions under the hot-and-
dry climate scenario result in less stored water (e.g. soil moisture and snowpack) to supplement 
RO.  

5. Conclusions & Recommendations 
 

In this work, we incorporate quantitative vegetation representation into a monthly 
resolution water balance model and utilize a dynamic parameterization to model both singular 
and overlapping watershed disturbances over the future period 2021-2050. A hot and dry 
climate simulation alone decreases water yield throughout each annual season, except during 
the rising limb of annual snowmelt, when warm temperatures drive more rapid RO. A fire 
simulation alone (similar in magnitude to the 2013 WFC fire) increases water yield throughout 
each annual season and produces the greatest and most-delayed ROpk. A combined fire and 
hot-and-dry climate simulation point to earlier and higher annual ROpk under these conditions. 
A combined forest-change and hot-and-dry simulation does not change RO relative to the 
climate-only simulation. These results demonstrate that climate, and especially antecedent 
hydrologic conditions, have strong controls on post-fire surface runoff and recovery. So, while 
future climate outcomes and the onset of wildfire remains uncertain, water managers should: 
1) plan for a narrowing in the timing window of annual melt season (faster, earlier melt) 
regardless of disturbance type (e.g. climate or land cover) and 2) consider pre-fire watershed 
conditions when formulating their post-fire response plans, knowing that annual water yield 
and ROpk will likely temporarily increase post-fire, but that dry antecedent conditions may result 
in earlier ROpk, while wetter antecedent conditions may result in delayed ROpk.  
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In addition to changes in the timing and magnitude of annual water yields, water 
managers should also prepare for temporarily impacted water quality after wildfire. While 
water quality was not explored in this study, others have observed compromised water quality 
after the 2013 WFC fire in the RGH (Rust et al., 2019). Specifically, Rust and others observed 
increases in sediment loading from steep severely burned hillslopes in tributaries to the Rio 
Grande. Consequently, post-fire turbidity was elevated for at least three years after the WFC 
fire and was ultimately responsible for acute fish kills immediately following the fire. Water 
managers should be weary of post-fire sedimentation after large rain events, and especially 
during monsoon season in the RGH, as post-fire precipitation events are responsible for 
dislodging sediments. Topographic (e.g. slope steepness) and hydro-climatic (e.g. precipitation, 
streamflow) variables have controls on the degree of post-fire stream sedimentation (Silins et 
al., 2009).  
 Beyond the RGH, much of Colorado’s land surface is covered by semi-arid high elevation 
alpine and subalpine forests. These regions receive a vast majority of Colorado’s annual water 
supply in the form of snowpack. As land cover and climate disturbances continue to disrupt 
Colorado’s mountains, understanding the hydrologic impacts of these disturbances and 
developing predictive tools for water supply planning is more urgent than ever – for Colorado, 
and all downstream states who rely on Rocky Mountain snowpack. This study is a good first 
step toward understanding and modeling hydrologic change after disruptions to Colorado’s 
high forests, however, more work is critically needed to capture hydrologic disruptions over 
larger areas.  

The empirical relationships and modeling framework developed in this study have 
strong potential to inform future modeling efforts in burned and/or semi-arid high elevation 
catchments – whether with the Monthly Water Balance Model or other hydrologic models. The 
model framework described here is likely transferrable to other models that already have either 
1) quantitative vegetation representation built-in or 2) the ability to modify ET modules (and/or 
snow and soil moisture modules) so that the mathematical representation of those processes 
can account for quantitative vegetation change. A modeling application such as the one 
presented here is feasible for a larger portion of the Rio Grande River basin, or even for the 
state of Colorado and hydrologically connected areas. However, this study, along with recent 
forest hydrology literature (Goeking & Tarboton, 2020) illustrates the importance of including 
quantitative vegetation representation in hydrologic models that are used to predict water 
supply changes associated with forest disturbance. Given that much of Colorado’s water supply 
originates in high mountain forested catchments that are constantly experiencing disturbance 
(drought, insect/disease induced forest mortality, wildfire, forest removal, development, etc.), 
large scale water supply modeling efforts must account for vegetation change to adequately 
capture and predict Colorado’s water supply under dynamic forest health conditions. For water 
supply modeling efforts in Colorado’s forested catchments, we do not recommend the use of 
hydrologic models lacking these elements. When a hydrologic model includes time varying 
vegetation information, not only will this allow the model to capture an initial disturbance (e.g. 
vegetation removal from wildfire) but it will also enable the model to capture the dynamic post-
disturbance recovery process (e.g. regrowth after burn). Cross-discipline coordination between 
hydrologists and state and federal forest managers will be essential for future modeling efforts.  

Other challenges and considerations for expanding this work to a larger domain, 
include: quantifying the many diversions and agricultural water uses in Colorado (and 
representing those anthropogenic water applications within a model), and obtaining hydrologic 
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datasets (e.g. streamflow, snowpack, etc.) with adequate spatial and temporal coverage of 
Colorado’s forested catchments. The Monthly Water Balance Model is capable of accounting 
for anthropogenic water use, however, other models that are structured to capture 
anthropogenic water-use and water-quality implications may be better outfitted for the task 
and should be considered if a larger domain modeling efforts are undertaken. Additionally, 
continued installation and operation of streamflow gages (such as those maintained by the 
Colorado Division of Water Resources or the USGS) and Snow Telemetry (SNOTEL) sites across 
Colorado’s forested basins will greatly support (and improve) predictive water supply modeling 
efforts throughout the state.  
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Appendix 

 
Figure A1- Map of recent disturbances in the Rio Grande Headwaters 
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Table A1 – Model Parameterization, Calibration & Validation Summary 

Calibration Parameter 
Original 
MWBM 
[baseline] 

MWBM-LAI 
[baseline] 

MWBM-LAI 
[fire-scenario] 

Original Calibration Parameters 

Tsnow -0.7 -0.7 -0.32 

Train 1.81 1.81 1.21 

drofrac 0.31 0.31 0.03 

meltmax 0.71 0.71 0.53 

STC 1112 1112 90 

rfactor 0.49 0.49 0.35 

Pfactors 

Winter 1.34 1.34 1.34 

Spring 0.7 0.7 0.7 

Summer 0.16 0.16 0.16 

Fall 0.8 0.8 0.8 

Model Period 
Objective  
Function 

 Objective Function Value 

Calibration 
Period 

WY 07-09 
Oct 2006 - Sept 

2009 

NSE 0.78 0.77 -- 

PBIAS -3 0.3 -- 

50/50 Score 87.27 88.21 -- 

Validation 
Period 

WY 10-12 
Oct 2009 - Sept 

2012 

NSE 0.7 0.65 -- 

PBIAS -1.2 9.1 -- 

50/50 Score 84.41 78.07 -- 

Post-fire 
Evaluation 

Period 

June 2013 - Dec 
2017 

NSE 0.56 0.64 0.72 

PBIAS -40.8 -31.4 -1.3 

50/50 Score 57.81   66.43 85.34 
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Table A2- Decadal Absolute Values of RO by Scenario 

 Runoff Absolute Values [mm] 

 

Decade  Baseline Climate Only 

Forest 
Change  

+ 
Climate 

Fire 
2041 
Only 

Fire 
2041 

+ 
Climate 

Fire 
2031 

+ 
Climate 

Average Annual  
Runoff Total  

2021-30 166.06 162.15 162.15 166.06 162.15 162.15 

2031-40 169.16 154.79 154.79 169.16 154.79 216.25 

2041-50 169.19 145.24 145.24 223.28 209.65 203.78 

Average Melt Season  
Runoff Total 
[Apr - Jun] 

2021-30 33.5 33.75 33.75 33.5 33.75 33.75 

2031-40 33.68 32.46 32.46 33.68 32.46 41.90 

2041-50 33.68 30.3 30.3 39.44 40.37 40.19 

Average Monsoon 
Season Runoff Total 

[Jul - Sept] 

2021-30 14.95 13.33 13.33 14.95 13.33 13.33 

2031-40 14.97 11.05 11.05 14.97 11.05 22.27 

2041-50 14.97 9.15 9.15 27.12 17.4 17.10 

Average Low-Flow  
Runoff Total 
[Oct - Dec] 

2021-30 5.33 5.32 5.32 5.33 5.32 5.32 

2031-40 5.34 5.4 5.4 5.34 5.4 7.82 

2041-50 5.34 5.66 5.66 9.92 6.46 5.54 

 
 

 
Figure A2- Flow duration curves for the last simulation decade.  
Each dot represents a month of simulated RO. A) axes are untransformed. B) y-axis is log-transformed for ease of 
viewing low RO values.  

• Here, changes in flow magnitudes for the last decade is through flow duration curves 
(FDCs) (Figure A2). FDCs reveal differences in scenario RO over a more-continuous range 
of flow magnitudes. Low flows have a higher probability of exceedance, while higher 
flows have a low probability of exceedance. Simulated RO trends in FDCs agree with 
trends in RO quartiles; “Climate Only” RO is always lower than baseline RO (except for 
during more moderate flow), and fire scenario RO is always higher than baseline. 
Differences in low flows are particularly evident in FDCs which illustrate the stark 
difference between fire-scenarios and non-fire scenarios (including baseline).  

 


